LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2023
UST 3502 - MATRIX AND LINEAR ALGEBRA

Date: 04-05-2023
Time: 01:00 PM - 04:00 PM \square Max. : 100 Marks

SECTION A			
Answer ALL the Questions			
1.	Define the following	($5 \times 1=5$)	
a)	Singular and Non-Singular matrices	K1	CO1
b)	Inverse of a matrix	K1	CO1
c)	Basis of a vector space	K1	CO1
d)	Eigen roots	K1	CO1
e)	Index and Signature	K1	CO1
2.	Fill in the blanks	($5 \times 1=5$)	
a)	A matrix \mathbf{A} such that $\mathbf{A}^{2}=\mathbf{I}$ is called	K1	CO1
b)	In a determinant the sum of the products of the elements of any row (column) with the cofactors for the corresponding elements of any other row (column) is	K1	CO1
c)	If F is any field, then F is a vector space over	K1	CO1
d)	The characteristic roots of a skew-Hermitian matrix are	K1	CO1
e)	A real symmetric matrix A is said to be positive definite if the corresponding form $X^{\mathrm{T}} \mathrm{AX}$ is	K1	CO1
3.	True or False	($5 \times 1=5$)	
a)	The multiplication of matrices is not always commutative.	K2	CO1
b)	If all the elements of a row (or a column) of a determinant are zero, the value of the determinant is zero.	K2	CO1
c)	The set $W=\{(a, 0, b): a, b \in R\}$ is not a subspace of $R^{3}(R)$.	K2	CO1
d)	Every square matrix satisfies its characteristic equation.	K2	CO1
e)	A real symmetric matrix is positive definite if and only if all its eigen values are positive.	K2	CO1
4.	Match the following	($5 \times 1=5$)	
a)		K2	CO1
b)	The method of solving n equations in n unknowns Unit modulus	K2	CO1
c)	The vectors in a basis are	K2	CO1
d)	The characteristic roots of an orthogonal matrix are $3 a^{2}+7 a b+4 b^{2}$	K2	CO1
e)	Real quadratic form	K2	CO 1

SECTION B			
Answer any TWO of the following questions		($2 \times 10=20$)	
5.	Solve the following system of linear equations by Cramer's rule: $x+y+z=7$, $x+2 y+3 z=16, x+3 y+4 z=22$.	K3	CO2
6.	Reduce the matrix $A=\left[\begin{array}{ccccc}2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2\end{array}\right]$ to normal form and find its rank.	K3	CO 2
7.	If S , T are two subsets of a vector space V , then prove that (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ (ii) $L(S U T)=L(S)+L(T)$ (iii) $L[L(S)]=L(S)$.	K3	CO 2
8.	Verify that the matrix $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$ satisfies its characteristic equation and compute A^{-1}.	K3	CO 2
SECTION C			
Answer any TWO of the following questions		($2 \times 10=20$)	
9.	Prove that every square matrix is uniquely expressible as the sum of a symmetric matrix and a skew-symmetric matrix.	K4	CO 3
10.	Compute the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ by using E-transformations.	K4	CO3
11.	Consider the basis $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ of R^{3} where $\alpha_{1}=(1,1,1), \alpha_{2}=(1,1,0)$, $\alpha_{3}=(1,0,0)$. Express ($2,-3,5$) in terms of the basis elements $\alpha_{1}, \alpha_{2}, \alpha_{3}$.	K4	CO3
12.	Determine a non-singular matrix P such that $\mathrm{P}^{1} \mathrm{AP}$ is a diagonal matrix, where $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.	K4	CO3
SECTION D			
Answer any ONE of the following question		(1 $\times 20=20)$	
13.	Solve the system of equations $2 x-2 y+5 z+3 w=0,4 x-y+z+w=0,3 x-$ $2 y+3 z+4 w=0, x-3 y+7 z+6 w=0$.	K5	CO4
14.	(i) Evaluate $\Delta=\left\|\begin{array}{llll}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right\|$ (ii) Write the polynomial $f(x)=x^{2}+4 x-3$ over R as a linear combination of the polynomials $f_{1}(x)=x^{2}-2 x+5, f_{2}(x)=2 x^{2}-3 x$ and $f_{3}(x)=x+3$.	K5	CO4
SECTION E			
Answer any ONE of the following question		$(1 \times 20=20)$	
15.	Reduce the following quadratic form to canonical form and find its rank and signature $x^{2}+4 y^{2}+9 z^{2}+t^{2}-12 y z+6 z x-4 x y-2 x t-6 z t$.	K6	CO5

16.

(i) Determine the eigenvalues and eigenvectors of the matrix
$A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(ii) Justify that the matrix $\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]$ is orthogonal.

