LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **B.Sc.** DEGREE EXAMINATION – **STATISTICS** THIRD SEMESTER - APRIL 2023 UST 3502 – MATRIX AND LINEAR ALGEBRA Dept. No. Date: 04-05-2023 Max.: 100 Marks Time: 01:00 PM - 04:00 PM **SECTION A Answer ALL the Questions Define the following** $(5 \times 1 = 5)$ 1. Singular and Non-Singular matrices K1 CO1 a) Inverse of a matrix K1 CO1 b) Basis of a vector space K1 CO1 c) d) Eigen roots K1 CO1 Index and Signature K1 CO1 e) 2. Fill in the blanks $(5 \times 1 = 5)$ A matrix **A** such that $A^2 = I$ is called K1 CO1 a) In a determinant the sum of the products of the elements of any row K1 CO1 b) (column) with the cofactors for the corresponding elements of any other row (column) is If F is any field, then F is a vector space over K1 CO1 c) K1 The characteristic roots of a skew-Hermitian matrix are CO1 d) A real symmetric matrix A is said to be positive definite if the corresponding K1 CO1 e) form X^TAX is **True or False** $(5 \times 1 = 5)$ 3. The multiplication of matrices is not always commutative. K2 CO1 a) If all the elements of a row (or a column) of a determinant are zero, the value b) K2 CO1 of the determinant is zero. The set $W = \{(a,0,b): a, b \in R\}$ is not a subspace of $R^3(R)$. K2 CO1 c) Every square matrix satisfies its characteristic equation. K2 CO1 d) A real symmetric matrix is positive definite if and only if all its eigen values K2 CO1 e) are positive. Match the following $(5 \times 1 = 5)$ 4. K2 CO1 a) $A^m = 0$ Linearly Independent The method of solving n equations in K2 CO1 b) n unknowns Unit modulus The vectors in a basis are Index of the nilpotent matrix A K2 CO1 c) d) The characteristic roots of an orthogonal K2 CO1 $3a^2 + 7ab + 4b^2$ matrix are

Cramer's rule

Real quadratic form

e)

CO1

K2

	SECTION B		
Answer any TWO of the following	Answer any TWO of the following questions		
5. Solve the following system of $x+2y+3z=16$, $x+3y+4z=22$.	inear equations by Cramer's rule: x+y+z=7,	K3	CO2
6. Reduce the matrix $A = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ 1 & -1 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 6 \\ 0 & 2 \\ 0 & 3 \\ 1 & 2 \end{bmatrix}$ to normal form and find its rank.	К3	CO2
7. If S, T are two subsets of a vec	tor space V, then prove that $L(SUT) = L(S) + L(T)$ (iii) $L[L(S)] = L(S)$.	К3	CO2
8. Verify that the matrix $A = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$ and compute A^{-1} .	$\begin{bmatrix} 2 & 1 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}$ satisfies its characteristic equation	К3	CO2
	SECTION C		
Answer any TWO of the following	questions	(2 x 1	10 = 20
-	is uniquely expressible as the sum of a	K4	CO3
symmetric matrix and a skew-s 10.		K4	CO3
Compute the inverse of the mar E-transformations.	trix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ by using	К4	03
	$\{\alpha_{3}\}$ of R ³ where $\alpha_{1} = (1,1,1), \alpha_{2} = (1,1,0),$	K4	CO3
	in terms of the basis elements $\alpha_1, \alpha_2, \alpha_3$.		
-	x P such that P ^T AP is a diagonal matrix,	K4	CO3
	SECTION D		
Answer any ONE of the following	question	(1 x 2	0 = 20)
13. Solve the system of equations $2^{2y+3z+4w=0}$, x-3y+7z+6w=0.	2x-2y+5z+3w=0, 4x-y+z+w=0, 3x-	K5	CO4
14. (i) Evaluate $\Delta = \begin{vmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}$	(10+10)	K5	CO4
(ii) Write the polynomial $f(x)$	$=x^{2}+4x-3$ over R as a linear combination		
	f_2x+5 , $f_2(x)=2x^2-3x$ and $f_3(x)=x+3$.		
	SECTION E		
Answer any ONE of the following	question	$(1 \times 20 = 20)$	
15. Reduce the following quadratic form to canonical form and find its rank and signature $x^2 + 4y^2 + 9z^2 + t^2 - 12yz + 6zx - 4xy - 2xt - 6zt$.		K6	CO5

A - 2	$ \begin{array}{ccc} 2 & -3 \\ 1 & -6 \\ -2 & 0 \end{array} $				(12+8)	
1	-2 0	ΓΟ Ο	0 -1	7		
(ii) Justify	that the matrix	$ \begin{array}{cccc} -1 & 0 \\ 0 & -1 \\ 0 & 0 \end{array} $				
			**	****		